

Real Options for Lab Stewardship Okanagan Campus

Judit Moldovan Laboratory Manager Barber School of Arts & Sciences Unit 3 - Chemistry Caitlyn Liberto Summer Student - 2010 Health, Safety & Environment & Green Research Advisory Council

Presenting on behalf of the Green Research Advisory Committee

Overview

Introduction / Re-introduction to the Okanagan Campus Experimental Changes – Greening Undergraduate Labs

Pilot - Small Scale Solvent Distillation

Questions

The View from the Okanagan

5 years... and still growing...

Our Growing Community

5 Years growth...

100% increase in service...

From 3479 to 7079 students

More than 400% increase in housing...

From 336 to 1400 beds

100% increase in land...

2010 UBC purchased an additional 103.6 ha of land adjacent to the Okanagan campus

Our Growing Space

New Buildings

2008 – Fipke Centre for Innovation and Research

2009 – University Centre

September 2010 – Arts & Sciences II

Coming Soon...

Health Sciences Centre Engineering Management Education

Okanagan Campus Green Highlights....

Did you know...

Geothermal energy provides a portion of the heat to the campus.

Our Earth tub can compost 150 lbs of pre-consumer organics daily...organics are taken from the campus kitchens.

Styrofoam on campus is collected free of charge and re-used by a local company to make insulating liners.

Okanagan Campus Green Highlights....

Did you know...

The Fisher/Corning Life Sciences Plastic Recycling Program was piloted at the Okanagan campus...diverting plastic from landfills.

Liquid chemical wastes are collected and transported in their original bottles and boxes...

...reducing containers needed to hold and transport waste.

The Biological Sciences Department is improving source separation by colour codinggetting the waste into the right waste stream

Labs

Experimental Changes Greening Undergraduate Labs

Caffeine Extraction From an Energy Drink – first year Chemistry Sulphonamide Synthesis – second year Organic Chemistry

Solvent-Free Alkylation of Carbanions

Solvent-Free Wittig Reaction – third year Organic Chemistry

K_{sp} of PbCl₂ - first year Chemistry

Caffeine Extraction from Energy Drink¹

	Original:	Replacement:	
Name:	Reactions of Functional Groups	Caffeine Extraction from Energy Drink	
Waste composition:	heavy metals, halogenated organics, ketones, aldehydes, hexane, cyclohexene	2-propanol, sodium chloride, energy drink	

1. (Murray and Hansen 1995)

Caffeine Extraction from Energy Drink – Waste Reduction¹

- Original Experiment
 - 12 mL hazardous waste/group
 - 120 mL hazardous waste/lab section
 - 4.1L/term
 - More hazardous reactants
- Greener Experiment
 - 2 mL hazardous waste/group
 - 20 mL hazardous waste/lab section
 - 0.68L/term
 - Less hazardous reactants

83% waste reduction

1. (Murray and Hansen 1995)

Sulphonamide Synthesis¹

New experiment added to curriculum Water as solvent in organic chemistry Waste composition Acidified water (62 ml/group) Sulphonamide (0.7 g) – lab product **Shows "real-life" experimentation Pharmaceutical production Demonstrates green labs**

Solvent-Free Alkylation of a Carbanion

Production of C-C bond using Mortar and Pestle

23 different combinations of bases, ketones and electrophilic alkanes in 2 steps:

Ketone + Base = Deprotonation
 Add Electrophilic Alkane = Alkylation
 Products:

unable to isolate a satisfactory amount

Conclusion:

Not suitable for a teaching lab

Solvent-Free Wittig Reaction¹

	Original:	Replacement:
Name:	Classic Wittig	Solvent-Free Wittig
Reagents:	trimethylphosphonoacetate, benzaldehyde, sodium hydride, ammonium chloride	benzyltriphenyl phosphoniumchloride, potassium phosphatetribasic,4-bromobenzaldehyde
Method Basis:	chemical reactants	physical mixing with a mortar and pestle
Extraction:	Tetrahydrofuran, ether, methanol, dichloromethane	Water

Products of the Solvent-Free Wittig Reaction

HNMR showed a 10:1 ratio of trans : cis isomers in product...as expected.

X 1

Br

Solvent-Free Wittig Reaction¹ Waste Reduction

Original: 1500 ml/term

Greener: 180 ml/term

88% waste reduction

1. (Leung and Angel 2004)

K_{sp} of Lead Chloride (PbCl₂) **A Modified Experiment**

	Original:	Replacement:
Name:	Solubility Produc	t of Lead Chloride
Starting Volumes:	PbNO3: 110 mL=2.4L/lab $NH_4Cl:$ 130 mLsection	PbNO ₃ : 55 mL =1.2 L/lab NH ₄ Cl: 65 mL section
Waste Composition:	160 mL PbNO₃ + NH₄Cl/group 1.6 L/lab section	40 mL PbNO ₃ + NH ₄ Cl/group 0.4L/lab section
Total Waste Volume:	54.4L/term	13.6 L/term

Green Labs Summary

Experiment	Improvements
Caffeine Extraction	83% decrease in waste Less toxic starting materials
Sulphonamide Synthesis	Adds a green component to existing experiments Demonstrates water as solvent
Solvent Free Wittig	88% decrease in waste
Solubility Product Constant of Lead Chloride	75% decrease in waste

Small Scale Solvent Distillation Project

2 Waste sources used:

- Homogeneous waste high concentration acetone
- Heterogeneous waste alcohols, acetone, diethyl ether, ethyl acetate and water
- 2 Set-ups:
 - Simple Distillation Apparatus
 - Fractional Distillation Apparatus
- **2** Purity Analysis:
 - Purity of acetone (HNMR & GCMS)
 - Residue left after evaporation(HNMR & GCMS)

Small Scale Solvent Distillation Project

Success!!

Simple distillation procedure using homogeneous waste:

- Very few contaminants in acetone
- No residue left after evaporation

Fractional distillation procedure using homogeneous waste:

Not necessary

Small Scale Solvent Distillation Project - More Opportunities:

Simple distillation procedure using heterogeneous waste:

- A few contaminants in acetone shown on the GCMS spectrum
- No residue left after evaporation

Fractional distillation procedure using heterogeneous waste:

- Very few contaminants in acetone
- No residue left after evaporation

Small Scale Solvent Distillation Summary

Small scale works – with relatively pure wastes...creates acetone for cleaning...

Recycling potential = 412 L of acetone waste¹/year

1. Acetone composition of 50% or greater

Next Steps for the Okanagan Campus

1. Provide lab Environmental Impact Statements (EIS) to PIs and lab managers

- 2. Educate waste generators about final fate of wastes
- 3. Increase recycling potential by better waste segregation
- 4. Create targets for waste reduction

Acknowledgements

Many thanks to the Green Research Advisory Committee, particularly Dr Ed Neeland and Dr James Bailey for their continuous support and advice during the summer research.

Many thanks to HSE Green Research Advisory Committee, in particular Shelley Kayfish and Cherie Michels for enthusiastically supporting our green research efforts.

References

Deng, X.; Mani, N.S. Green Chem., 2006, 8, 835-838.
Leung, S.H.; Angel, S.A. J. Chem. Ed., 2004, 81, 1492-1493.
Murray, S.D.; Hansen, P.J. J. Chem. Ed., 1995, 72, 851-852.

Questions

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA